The Synthesis of E Enol Ethers of Protected 4-Amino Aldehydes

Susan K. Armstrong, ${ }^{a}$ Eric W. Collington ${ }^{b}$ and Stuart Warren *,a
${ }^{a}$ University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, UK
${ }^{\text {b }}$ Glaxo Group Research, Greenford Road, Greenford, Middlesex UB6 OHE, UK

Abstract

The title compounds, a novel class of protected homoallylic amines, have been synthesised by a short and efficient route. Acrolein acetals were converted by a modified Michaelis-Arbuzov reaction into α-alkoxyallyl(diphenyl)phosphine oxides. 1.3-Dipolar cycloaddition to the alkene part of these molecules gave 5 -diphenylphosphinoyl-4,5-dihydroisoxazoles, which were reductively cleaved to obtain δ-amino- β-hydroxy- α-alkoxyalkyl(diphenyl)phosphine oxides. After selective protection as the N-acetyl derivatives, stereospecific Wittig-Horner diphenylphosphinic acid elimination gave the title compounds.

The title compounds 6 are a functionalised and protected class of homoallylic primary amines 7 which, to our knowledge, have not been synthesised before. In this paper, we present an efficient five-step synthesis of these novel compounds, as outlined in Scheme 1. In our synthesis, the carbon-carbon double bond

Scheme 1
in the enol ethers 6 was created by a Horner-Wittig elimination. The necessary β-hydroxyalkylphosphine oxide derivatives 4 were set up in a latent form by nitrile oxide cycloaddition to α-alkoxyallyl(diphenyl)phosphine oxides 2. Reductive ring cleavage of the resulting isoxazolines anti-3 then unmasked the hydroxy group, as well as giving rise to the primary amino group in 4. Protection of this function as an amide (in 5) was necessary before completing the synthesis by stereospecific elimination of diphenylphosphinic acid to give the product enol ethers 6.
Allylic acetals 1 were converted by the Michaelis-Arbuzov strategy of Miller and co-workers ${ }^{1}$ into α-alkoxyallyl(di-

Table 1 Cycloadditions of alkenes 2 and nitrile oxides

Alkene 2	R^{1}	Isoxazole 3	R^{2}	$\begin{aligned} & \text { Yield (\%) } \\ & \text { (anti-3 + syn-3) } \end{aligned}$	Ratio anti-3:syn-3
a	Me	a	Pr	27^{a}	70:30
a	Me	b	Ph	$66^{\text {b }}$	76:24
b	Et	c	Pr	63	67:33
b	Et	d	Ph	63	80:20

${ }^{a}$ Yield of anti-3 after fractional crystallisation. ${ }^{b}$ Sonication of the reaction mixture gave the same diastereoisomeric ratio in 52% yield.
phenyl)phosphine oxides 2 . The reaction worked well with acrolein diethyl acetal 1b, as well as the dimethyl acetal of the original report, but contrary to that report we found these phosphine oxides difficult to recrystallise and unstable to heat. We therefore did not purify them before use.
Nitrile oxide cycloadditions to alkenes 2 were straightforward, if slow (typically requiring 5 days for completion), under our standard conditions. ${ }^{2}$ These were heterogeneous, involving aqueous NaOCl (bleach) above a dichloromethane solution of the alkene and an aldehyde oxime as the nitrile oxide precursor. Nitrile oxide cycloaddition to unfunctionalised allylphosphine oxides ${ }^{2}$ is accelerated by ultrasound, as are other [1,3]-dipolar cycloadditions. ${ }^{3}$ However, these cycloadditions of α-alkoxyallyl(diphenyl)phosphine oxides 2 were not appreciably accelerated by sonication.

As expected with a monosubstituted electron-rich double bond, the cycloadditions were totally regioselective, giving only the 3,5 -disubstituted adducts 3 . The reactions were also moderately stereoselective, giving mixtures of anti-3 and syn-3 in which the anti compounds always predominated (see Table 1). This is consistent with the transition state model of Houk and co-workers. ${ }^{4}$ However, the reactions were less stereoselective than those of the corresponding α-alkyl substituted phosphine oxides 8. ${ }^{2}$ The Houk model predicts the opposite, and it has been generally observed that allylic ethers are more stereoselective than similar α-alkyl alkenes. ${ }^{4.5}$ The unusually poor selectivity of our alkenes is not understood.

The two diastereoisomeric cycloadducts anti-3 and syn-3 had very similar R_{F} values, and could not be separated by flash column chromatography, unlike the analogous nonoxygenated compounds anti- and syn-9. ${ }^{2}$ The major isomers, anti-3, could be isolated by fractional crystallisation, but the minor isomers, syn-3, were never isolated. The stereochemistry was confirmed both by NMR correlations to compound anti-10, of which an X-ray crystal structure had been obtained, ${ }^{2,6}$ and by chemical conversion (see below).

$$
\begin{aligned}
& \text { (i) } \mathrm{NaBH}_{4}, \mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH},-30^{\circ} \mathrm{C} \\
& \text { 3a, 4a: } \mathrm{R}^{2}=\mathrm{Pr}, 98 \%, 50: 50 \\
& \text { 3b, 4b: } \mathrm{R}^{2}=\mathrm{Ph}, 97 \%, 71: 29
\end{aligned}
$$

Scheme 2

The isoxazolines anti- 3 were reduced cleanly and in high yield to the corresponding amino alcohols 4 using sodium borohydride and nickel(II) chloride hexahydrate. ${ }^{2,7}$ The reductions proceeded very rapidly and with rather low stereoselectivity, even at $-30^{\circ} \mathrm{C}$ (Scheme 2). Separation of the diastereoisomeric amino alcohols was not attempted, as the two diastereoisomers (anti,anti-4 and anti,syn-4) again had very similar R_{F} values, and were expected to give the same enol ethers 6 at the end of the synthesis (see below).
Earlier work had shown that the homoallylic amines 7 were best isolated as their hydrochloride salts. ${ }^{2}$ The acidic conditions involved in this isolation are incompatible with the acid-labile enol ether function present in the products 6. The amino alcohols 4 were, therefore, protected as their N-acetyl derivatives 5. Reaction with acetic anhydride was totally chemoselective for the primary branched chain amine in the presence of a secondary alcohol, provided that the reaction was carried out in the absence of base, and for the minimum time (Scheme 3). Longer exposure tended to give O-acetyl derivatives 11 as

(i) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1-2 \mathrm{~h}$

4a, 5a: $R^{2}=\operatorname{Pr}, 102 \%, 55: 45$
4b, 5b: $\mathrm{R}^{2}=\mathrm{Ph}, 70 \%$, ratio not measured
Scheme 3
unwanted by-products. The diastereoisomers of N-acetylamino alcohols 5 (anti, anti- 5 and anti, syn-5) proved separable by flash column chromatography, although in this case such separation was unnecessary, and the relative stereochemistries of the two diastereoisomers were not determined.

Stereospecific elimination of diphenylphosphinic acid from N-acetylamino alcohols 5 proceeded as expected under our normal conditions of sodium hydride in N, N-dimethylformamide (DMF). ${ }^{8}$ The hygroscopic enol ethers 6 could be purified by flash column chromatography without hydrolysis of the enol ether group, although some material was lost. Since the alcohols 5 were derived from isoxazolines anti-3, and therefore had anti stereochemistry across the two centres involved in the reaction, the stereospecific elimination was expected to give exclusively E alkenes (Scheme 4). The E geometry in alkenes 6

(i) $\mathrm{NaH}, \mathrm{DMF}$

5a, 6a: $R^{2}=\operatorname{Pr}, 91 \%$
5b, 6b: $R^{2}=P h, 39 \%$
Scheme 4

8

anti-9

10

11
was confirmed from the NMR spectra by the vicinal vinylic coupling constants of 12.6 and 12.7 Hz (typical values 6.5 for Z and 12.3 for E enol ethers). ${ }^{9}$ Since the N-acetyl enol ethers 6 had only one chiral centre, the geometry of the third (N bearing) centre in precursors 4 and 5 was unimportant, although the diastereoisomeric N-acetyl derivatives 5 could be separated if desired (see above).

The route shown in Scheme 1 thus represents the first synthesis of δ-amino enol ethers, which are produced as single geometrical isomers in a protected (N-acetylated) form. The stereochemistry of the double bond is directly related to the stereoselectivity in the nitrile oxide cycloaddition.

Experimental

General.--Column chromatography was carried out at slightly greater than atmospheric pressure using Merck Kieselgel 60 (230-400 mesh). High performance liquid chromatography (HPLC) was performed using a Dynamax prepacked silica column (21.4 mm i.d. $\times 25 \mathrm{~cm}$), with a Gilson model 303 pump operating at $10 \mathrm{~cm}^{3} \min ^{-1}$ and a Cecil Instruments CE 212A UV detection system measuring the absorbance at 254 nm . Thin layer chromatography (TLC) was carried out on commercially available pre-coated plates (Merck silica Kieselgel $60 \mathrm{~F}_{254}$). All solvents were distilled before use. Tetrahydrofuran (THF) was freshly distilled from potassium using benzophenone radical as an indicator. Diethyl ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$ was dried by distillation from calcium hydride. Dimethylformamide (DMF) was dried with and stored over activated molecular sieves ($4 \AA$).
M.p.s were measured on a Reichart hot-stage microscope and are uncorrected. IR spectra were recorded on a PerkinElmer 297 grating spectrophotometer. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Bruker WM $250(250 \mathrm{MHz})$ and WM $400(400$ MHz) Fourier transform spectrometers. ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 250 MHz unless otherwise stated. ${ }^{13} \mathrm{C}$ NMR were recorded on a Bruker WM $400(100 \mathrm{MHz})$ spectrometer. Chemical shifts are quoted in ppm relative to tetramethylsilane ($\delta 0.00 \mathrm{ppm}$) or chloroform ($\delta 7.25 \mathrm{ppm}$) for proton spectra, and relative to chloroform ($\delta 77.0 \mathrm{ppm}$) for carbon spectra. J Values are given throughout in Hz . Mass spectra were recorded on an AEI Kratos MS30 machine using a DS503 data system
for high resolution analysis. Microanalyses were carried out using Carlo Erba 1106 or Perkin-Elmer 240 automatic analysers.

3-Methoxy-3-diphenylphosphinoylprop-1-ene 2a.-By the method of Miller, ${ }^{1}$ chlorodiphenylphosphine ($3.3 \mathrm{~cm}^{3}, 18$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(4 \mathrm{~cm}^{3}\right)$ was added slowly to acrolein dimethyl acetal $1 \mathrm{a}\left(2.2 \mathrm{~cm}^{3}, 18 \mathrm{mmol}\right)$ at $0^{\circ} \mathrm{C}$ under Ar. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h and then at room temperature for $18 \mathrm{~h} . \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and MeCl were removed under reduced pressure to give the phosphine oxide 2a as white needles $(5.21 \mathrm{~g}, 105 \%)$, identified by its ${ }^{1} \mathrm{H}$ NMR spectrum: $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 3.33(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 4.48(1 \mathrm{H}, \mathrm{tdd}, J 1.3,6.6$ and 13.1 , PCH), $5.34\left(1 \mathrm{H}\right.$, ddd, $J 1.5,3.1$ and $\left.10.1, \mathrm{CH}=\mathrm{CH}_{\text {cis }} \mathrm{H}_{\text {trans }}\right), 5.35$ (1 H , ddd, $J 1.4,4.2$ and $17.5, \mathrm{CH}=\mathrm{CH}_{\text {cis }} H_{\text {trans }}$), $5.86(1 \mathrm{H}$, dddd, $J 3.7,6.5,10.3$ and 17.5, $\mathrm{CH}=\mathrm{CH}_{\text {cis }} \mathrm{H}_{\text {trans }}$), $7.36-7.56(6 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{Ph}_{2} \mathrm{PO}\right)$ and $7.69-7.93\left(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right)$.

3-Diphenylphosphinoyl-3-ethoxyprop-1-ene $\mathbf{2 b}$.-Chlorodiphenylphosphine ($1.8 \mathrm{~cm}^{3}, 10 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \mathrm{~cm}^{3}\right)$ was added dropwise at $0^{\circ} \mathrm{C}$ under Ar to stirred acrolein diethyl acetal $1 \mathrm{~b}\left(1.5 \mathrm{~cm}^{3}, 10 \mathrm{mmol}\right)$ and the mixture stirred at $0^{\circ} \mathrm{C}$ to room temperature for $16 \mathrm{~h} . \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and EtCl were removed under reduced pressure to give 3-diphenylphosphinoyl-3-ethoxyprop-1-ene $\mathbf{2 b}$ as a yellow oil, contaminated with chlorodiphenylphosphine oxide: the compound was characterised and used impure (Found: $\mathrm{M}^{+}, 286.1117 . \mathrm{C}_{17}{ }_{7} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{P}$ requires $M, 286.1123) ; R_{\mathrm{F}}(\mathrm{EtOAc}) 0.40 ; v_{\max }\left(\mathrm{CDCl}_{3}\right) / \mathrm{cm}^{-1} 3300-2750$ (CH), 1590 and $1540(\mathrm{Ph}), 1415(\mathrm{P}-\mathrm{Ph})$, and $1175(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.09(3 \mathrm{H}, \mathrm{t}, J 7.0$, Me) $3.29(1 \mathrm{H}, \mathrm{qd}, J 7.0$ and 9.2 , $\left.\mathrm{OCH} \mathrm{A}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.64\left(1 \mathrm{H}, \mathrm{qd}, J 7.0\right.$ and $\left.9.2, \mathrm{OCH}_{\mathrm{A}} H_{\mathrm{B}}\right), 4.59(1 \mathrm{H}, \mathrm{dd}$, $J 6.2$ and $14.2, \mathrm{PCH}), 5.27-5.40\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.89(1 \mathrm{H}$, dddd, $J 3.9,6.3,10.3$ and $17.0, \mathrm{CH}=\mathrm{CH}_{2}$) and $7.34-7.97(10 \mathrm{H}$ and signals from $\left.\mathrm{Ph}_{2} \mathrm{POCl}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right) ; m / z 286\left(\mathrm{M}^{+}, 4 \%\right), 271$ $\left(\mathrm{M}^{+}-\mathrm{Me}, 7\right), 257\left(\mathrm{M}^{+}-\mathrm{Et}, 10\right), 242\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{3} \mathrm{H}_{5}\right.$, 10], 230 [$\left.\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{Et}, 5\right], 202$ ($\mathrm{Ph}_{2} \mathrm{PHO}, 38$), 201 ($\mathrm{Ph}_{2} \mathrm{PO}, 92$), $85\left(\mathrm{M}^{+}-\mathrm{Ph}_{2} \mathrm{PO}, 100\right)$ and $77(\mathrm{Ph}, 46)$.
anti-5-[Diphenylphosphinoyl(methoxy)methyl]-3-propyl-4,5dihydroisoxazole 3a.-3-Diphenylphosphinoyl-3-methoxy-prop-1-ene $2 \mathrm{a}(274 \mathrm{mg}, 1 \mathrm{mmol})$, butyraldehyde oxime (0.17 $\left.\mathrm{cm}^{3}, 2 \mathrm{mmol}\right), \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ and $\mathrm{NaOCl}\left(2 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right.$ aqueous solution; $1.5 \mathrm{~cm}^{3}, 3 \mathrm{mmol}$) were stirred together for 17 d, with more oxime and NaOCl added after 4 and 6 d . The mixture was separated and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated, and the residue purified by column chromatography on SiO_{2}, eluting with EtOAc-hexane (9:1) to give a mixture of diastereoisomeric 4,5-dihydroisoxazoles 3a as a yellow oil which slowly crystallised. The anti-4,5-dihydroisoxazole anti-3a was purified by fractional crystallisation from EtOAc-hexane as white needles ($96 \mathrm{mg}, 27 \%$), m.p. $133-135^{\circ} \mathrm{C}$ (Found: C, 67.1; H, 6.7; N, 4.2\%; $\mathrm{M}^{+}+\mathrm{H}, 358.1565$. $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{3} \mathrm{P}$ requires C, $67.2 ; \mathrm{H}, 6.8 ; \mathrm{N}, 3.9 \% ; M+\mathrm{H}$, 358.1572); $R_{\mathrm{F}}(\mathrm{EtOAc}) 0.32 ; v_{\text {max }}\left(\mathrm{CDCl}_{3}\right) / \mathrm{cm}^{-1} 3100-3020$ (aryl $\mathrm{CH}), 3000-2800(\mathrm{CH}), 1710(\mathrm{C}=\mathrm{N}), 1595(\mathrm{Ph}), 1430(\mathrm{P}-\mathrm{Ph})$, $1190(\mathrm{P}=\mathrm{O})$, and $1110(\mathrm{C}-\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.89(3 \mathrm{H}, \mathrm{t}, J 7.4$, $\left.\mathrm{CH}_{2} \mathrm{Me}\right), 1.49\left(2 \mathrm{H}\right.$, sextet, $\left.J 7.4, \mathrm{CH}_{2} \mathrm{Me}\right), 2.22\left(2 \mathrm{H}, \mathrm{t}, J 7.5,3^{\prime}-\right.$ $\left.\mathrm{H}_{2}\right), 2.57\left(1 \mathrm{H}, \mathrm{dd}, J 11.1\right.$ and $\left.17.3,4-H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.90(1 \mathrm{H}, \mathrm{dd}, J 8.6$ and $\left.17.4,4-\mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}\right), 3.43(3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}), 4.47(1 \mathrm{H}, \mathrm{dd}, J 1.2$ and 8.4, PCH), 4.97 (1 H, tdd, $J 1.3,8.8$ and $10.7,5-\mathrm{H}$), $7.45-7.60$ (6 $\mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$), and $7.80-7.96\left(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 13.6$ $\left(\mathrm{CH}_{2} \mathrm{Me}\right), 19.6\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right), 36.4\left(\mathrm{CH}_{2}\right), 62.5(\mathrm{~d}, \mathrm{~J} 8$, MeO), 79.3 (d, $J 11, \mathrm{C}-5$), 80.6 (d, $J 85, \mathrm{PCH}$), 128.4, 128.5, 128.8, 128.9, 129.8 (d, J97, ipso-C), 130.9, 131.0, 131.4 (d, J 94, ipso-C), 131.9, 132.0, 132.2, 132.3 and $160.0(\mathrm{C}=\mathrm{N}) ; \mathrm{m} / \mathrm{z} 358$ $\left(\mathrm{M}^{+}+\mathrm{H}, 1 \%\right), 288\left(\mathrm{M}^{+}-\mathrm{PrCN}, 3\right), 273\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{2}\right.$, 9], $258\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}, 31\right], 246\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}, 82\right], 231$ [$\left.\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{O}, 100\right], 202\left(\mathrm{Ph}_{2} \mathrm{PHO}, 17\right), 201\left(\mathrm{Ph}_{2} \mathrm{PO}, 47\right), 185$ ($\mathrm{Ph}_{2} \mathrm{P}, 31$) and 77 ($\mathrm{Ph}, 28$).
anti-5-[Diphenylphosphinoyl(methoxy)methyl]-3-phenyl-4,5dihydroisoxazole $\mathbf{3 b}$. $-\mathrm{NaOCl}\left(2 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ aqueous solution; $1.5 \mathrm{~cm}^{3}, 3 \mathrm{mmol}$) was added to a stirred solution of 3 -diphenylphosphinoyl-3-methoxyprop-1-ene 2a (273 mg , 1 mmol) and benzaldehyde oxime ($0.17 \mathrm{~cm}^{3}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ and the mixture stirred for 7 d , with more oxime and bleach added after 4 d . The mixture was separated and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated, and the residue purified by column chromatography on SiO_{2}, eluting with 10% hexane in EtOAc to give a $3: 1$ mixture of the diastereoisomeric isoxazolines 3 b ($259 \mathrm{mg}, 66 \%$), from which the anti-isoxazoline anti-3b was obtained by repeated recrystallisation from EtOAchexane as white plates ($200 \mathrm{mg}, 51 \%$), m.p. (EtOAc-hexane) $118-120^{\circ} \mathrm{C}$ (Found: $\mathrm{M}^{+}-\mathrm{PhC}_{2} \mathrm{H}_{3} \mathrm{~N}$, 273.0664. $\mathrm{C}_{23} \mathrm{H}_{22^{-}}$ $\mathrm{NO}_{3} \mathrm{P}$ requires $\mathrm{M}-\mathrm{PhC}_{2} \mathrm{H}_{3} \mathrm{~N}, 273.0680$); R_{F} (EtOAc) 0.43; $v_{\max }\left(\mathrm{CDCl}_{3}\right) / \mathrm{cm}^{-1} 3060(\operatorname{aryl} \mathrm{CH}), 2980-2800(\mathrm{CH}), 1670$ $(\mathrm{C}=\mathrm{N}), 1570$ and $1490(\mathrm{Ph}), 1435(\mathrm{P}-\mathrm{Ph}), 1190(\mathrm{P}=\mathrm{O})$ and 1115 $(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.97\left(1 \mathrm{H}, \mathrm{dd}, J 11.2\right.$ and 17.0, $\left.4-\mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.32$ ($1 \mathrm{H}, \mathrm{dd}, J 9.4$ and $16.8,4-\mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}$), $3.44(3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}), 4.58(1 \mathrm{H}$, dd, $J 1.2$ and $8.8, \mathrm{PCH}), 5.18(1 \mathrm{H}$, tdd, $J 1.5,9.3$ and $11.0,5-\mathrm{H}$), 7.34-7.70 $\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ and PhCN$)$ and 7.79-8.00 $(5 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}_{2} \mathrm{PO}$ and PhCN$) ; \delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 34.3\left(\mathrm{CH}_{2}\right), 62.6(\mathrm{~d}, J 8, \mathrm{MeO})$, 80.4 (d, J73, PCH), 80.9 (C-5), 126.6, 128.5, 128.6, 128.9, 129.3 $\left(\mathrm{NC}-\mathrm{C}_{\text {ary }}\right), 129.7$ (d, J96, ipso-C), 130.0, 131.0, 131.1, 131.2 (d, $J 97$, ipso-C), 132.0, 132.1, 132.4 and $157.6(\mathrm{C}=\mathrm{N}) ; m / z 288\left(\mathrm{M}^{+}\right.$ $-\mathrm{PhCN}, 1 \%), 273\left(\mathrm{M}^{+}-\mathrm{PhC}_{2} \mathrm{H}_{3} \mathrm{~N}, 4\right), 246\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O})-\right.$ $\left.\mathrm{CH}_{2} \mathrm{OMe}, 100\right], 231\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{O}, 85\right], 202\left(\mathrm{Ph}_{2} \mathrm{PHO}, 17\right)$, $201\left(\mathrm{Ph}_{2} \mathrm{PO}, 44\right)$ and 77 ($\mathrm{Ph}, 44$).
anti-5-[Diphenylphosphinoyl(methoxy)methyl]-3-phenyl-4,5dihydroisoxazole $\mathbf{3 b}$.-This compound was also made with sonication. By this method, 3-diphenylphosphinoyl-3-methoxy-prop-1-ene 2a ($915 \mathrm{mg}, 3.4 \mathrm{mmol}$), benzaldehyde oxime (0.51 $\left.\mathrm{cm}^{3}, 6 \mathrm{mmol}\right), \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(30 \mathrm{~cm}^{3}\right)$ and $\mathrm{NaOCl}\left(2 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right.$ aqueous solution; $3.5 \mathrm{~cm}^{3}, 7 \mathrm{mmol}$) were sonicated for 6.5 h . The mixture was separated and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried (MgSO_{4}) and evaporated, and the residue purified by column chromatography on SiO_{2}, eluting with EtOAc to give a mixture of the diastereoisomeric isoxazolines 3 b ($685 \mathrm{mg}, 52 \%$).
anti-5-[Diphenylphosphinoyl(ethoxy)methyl]-3-propyl-4,5dihydroisoxazole 3c.-3-Diphenylphosphinoyl-3-ethoxyprop-1-ene $2 \mathrm{~b}(0.90 \mathrm{~g}, 3.15 \mathrm{mmol})$, butyraldehyde oxime $\left(0.37 \mathrm{~cm}^{3}\right.$, $6.3 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(30 \mathrm{~cm}^{3}\right)$ and $\mathrm{NaOCl}\left(2 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ aqueous solution; $4 \mathrm{~cm}^{3}, 8 \mathrm{mmol}$) were stirred for 6 d , with more oxime and NaOCl added after 1 and 5 d . The mixture was separated and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated, and the residue purified by column chromatography on SiO_{2}, eluting with EtOAc-hexane ($3: 2$) and then EtOAc to give a mixture of diastereoisomeric 4,5 -dihydroisoxazoles 3 c ($731 \mathrm{mg}, 63 \%$). The anti-4,5-dihydroisoxazole was purified by fractional crystallisation from MeOAc-hexane as white needles ($514 \mathrm{mg}, 44 \%$), m.p. $129-135^{\circ} \mathrm{C}$ (Found: C, 67.8; H, 7.2; N, $3.5 \% ; \mathrm{M}^{+}{ }^{-}$ $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}, 327.1394 . \mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NO}_{3} \mathrm{P}$ requires C, 67.9; $\mathrm{H}, 7.0 ; \mathrm{N}$, $3.8 \% ; M-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}, 327.1388$); $R_{\mathrm{F}}(\mathrm{EtOAc}) 0.43 ; v_{\max }\left(\mathrm{CDCl}_{3}\right) /$ $\mathrm{cm}^{-1} 3100-3020$ (aryl CH), $3000-2800(\mathrm{CH}), 1615(\mathrm{C}=\mathrm{N})$, $1590(\mathrm{Ph}), 1430(\mathrm{P}-\mathrm{Ph}), 1180(\mathrm{P}=\mathrm{O})$ and $1110(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $0.89\left[3 \mathrm{H}, \mathrm{t}, J 7.4,\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Me}\right], 0.98\left(3 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{OCH}_{2} \mathrm{Me}\right)$, $1.48\left(2 \mathrm{H}\right.$, sextet, $\left.J 7.3, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 2.21\left(2 \mathrm{H}, \mathrm{t}, J 7.6,3^{\prime}-\mathrm{H}_{2}\right)$, $2.56\left(1 \mathrm{H}\right.$, dd, $J 11.0$ and $\left.17.2,4-H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.93(1 \mathrm{H}, \mathrm{dd}, J 8.6$ and $\left.17.3,4-\mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}\right), 3.37\left(1 \mathrm{H}\right.$, quintet, $\left.J 7.2, \mathrm{OCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.77(1 \mathrm{H}$, quintet, $\left.J 7.2, \mathrm{OCH}_{\mathrm{A}} H_{\mathrm{B}}\right), 4.53(1 \mathrm{H}$, br d, $J 8.6, \mathrm{PCH}), 4.96(1 \mathrm{H}$, br t, $J 9.7,5-\mathrm{H}), 7.45-7.59\left(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right)$ and $7.80-7.97(4 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 13.6(\mathrm{Me}), 15.5(\mathrm{Me}), 19.6\left(\mathrm{CH}_{2}-\right.$ $\mathrm{CH}_{2} \mathrm{Me}$), 29.4 (C-3'), 36.6 (C-4), 70.0 (d, J 7, OCH_{2}), 79.3
(d, J 12, C-5), 79.3 (d, J 85, PCH), 128.3, 128.4, 128.7, 128.8, 129.8 (d, J97, ipso C), 131.0, 131.1, 131.3 (d, J96, ipso C), 132.0, 132.1, 132.2 and $159.9(\mathrm{C}=\mathrm{N}) ; m / z 327\left(\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}, 1.9 \%\right)$, $302\left(\mathrm{M}^{+}-\mathrm{PrCN}, 1.1\right), 286\left(\mathrm{M}^{+}-\mathrm{PrCNO}, 0.2\right), 273\left[\mathrm{Ph}_{2^{-}}\right.$ $\left.\mathrm{P}(\mathrm{O}) \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}, 12\right], 260 \quad\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}, 67\right], 258\left(\mathrm{M}^{+}-\right.$ $\left.\mathrm{PrCN}-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}, 11\right), 243\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}, 9.3\right], 231\left(\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O})-\right.$ $\left.\mathrm{CH}_{2} \mathrm{O}, 100\right], 202\left(\mathrm{Ph}_{2} \mathrm{PHO}, 23\right), 201\left(\mathrm{Ph}_{2} \mathrm{PO}, 55\right), 185\left(\mathrm{Ph}_{2} \mathrm{P}\right.$, 27), $170\left(\mathrm{M}^{+}-\mathrm{Ph}_{2} \mathrm{PO}, 2.7\right)$ and $77(\mathrm{Ph}, 25)$.
anti-5-[Diphenylphosphinoyl(ethoxy)methyl]-3-phenyl-4,5-di-
hydroisoxazole 3d.-3-Diphenylphosphinoyl-3-ethoxyprop-1-
ene $2 \mathrm{~b}(0.90 \mathrm{~g}, 3.15 \mathrm{mmol})$, benzaldehyde oxime ($0.762 \mathrm{~g}, 6.3$
mmol), $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(30 \mathrm{~cm}^{3}\right)$ and $\mathrm{NaOCl}\left(2 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right.$ aqueous
solution; $4 \mathrm{~cm}^{3}, 8 \mathrm{mmol}$) were stirred for 3 d , with more oxime
and NaOCl added after 1 d . The mixture was separated and the
aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic
layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated, and the residue
purified by column chromatography on SiO_{2}, eluting with
EtOAc-hexane (3-2) to give a mixture of diastereoisomeric 4,5-
dihydroisoxazoles $3 \mathrm{~d}(800 \mathrm{mg}, 63 \%$). The anti-4,5-dihydroisoxa-
zole was purified by fractional crystallisation from MeOAc-
hexane as white needles ($530 \mathrm{mg}, 42 \%$), m.p. $172-174^{\circ} \mathrm{C}$ (Found:
$\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}, 361.1221 . \mathrm{C}_{24} \mathrm{H}_{24} \mathrm{NO}_{3} \mathrm{P}$ requires $\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$,
361.1210); R_{F} (EtOAc) 0.53; $v_{\max }\left(\mathrm{CDCl}_{3}\right.$) $/ \mathrm{cm}^{-1} 3110-3000$ (aryl
CH), 3000-2800 (CH), 1590 and $1570(\mathrm{Ph}), 1430(\mathrm{P}-\mathrm{Ph}), 1260$
$(\mathrm{CO}), 1170(\mathrm{P}=\mathrm{O}), 1115(\mathrm{CO})$ and $1060(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.94(3$
$\mathrm{H}, \mathrm{t}, J 7.0, \mathrm{Me}), 2.97\left(1 \mathrm{H}, \mathrm{dd}, J 11.2\right.$ and $\left.16.8,4-H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.36(1$
H , dd, $J 9.0$ and $\left.17.5,4-\mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}\right), 3.4(1 \mathrm{H}, \mathrm{qd}, J 7.0$ and 8.8 ,
$\left.\mathrm{OCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.78\left(1 \mathrm{H}, \mathrm{qd}, J 7.1\right.$ and $\left.9.0, \mathrm{OCH}_{\mathrm{A}} H_{\mathrm{B}}\right), 4.64(1 \mathrm{H}$, br
d, $J 8.8, \mathrm{PCH}$), $5.17(1 \mathrm{H}$, br dd, $J 9.5$ and $10.6, \mathrm{OC}-5 \mathrm{H}), 7.29-$
$7.39\left(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ and PhCN$), 7.46-7.63\left(8 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ and
$\mathrm{PhCN})$ and 7.85-8.02 (4 H, m, $\mathrm{Ph}_{2} \mathrm{PO}$ and PhCN$) ; ~ \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$
$15.4(\mathrm{Me}), 34.4\left(\mathrm{C}-4 \mathrm{H}_{2}\right), 70.7\left(\mathrm{~d}, J 7, \mathrm{OCH}_{2}\right), 79.0(\mathrm{~d}, J 85$,
PCH), 80.8 (d, J 12, C-5), 126.6, 128.4, 128.5, 128.6, 128.8,
128.9, 129.2, 129.7 (d, J97, ipso C), 130.0, 131.1, 131.2, 131.2 (d,
$J 96$, ipso C), 132.1, 132.2, 132.3 and $157.6(\mathrm{C}=\mathrm{N}) ; m / z 361\left(\mathrm{M}^{+}\right.$
$\left.-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}, 0.7\right), 302\left(\mathrm{M}^{+}-\mathrm{PhCN}, 1.1\right), 273\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right.$,
7.8], 260 [$\left.\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}, 93\right], 243$ [$\left.\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}, 6.7\right], 231$
$\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{O}, 100\right], 201\left(\mathrm{Ph}_{2} \mathrm{PO}, 42\right)$ and $77(\mathrm{Ph}, 31)$.
anti, anti- and anti, syn-4-Amino-1-diphenylphosphinoyl-1-ethoxyheptan-2-ol $\mathbf{4 a}$.- $\mathrm{NaBH}_{4}(250 \mathrm{mg}, 6.5 \mathrm{mmol})$ was added portionwise to a stirred solution of anti-5-[diphenylphosphinoyl-(ethoxy)methyl]-3-propyl-4,5-dihydroisoxazole 3c $(482 \mathrm{mg}$, 1.23 mmol) and $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(618 \mathrm{mg}, 2.6 \mathrm{mmol})$ in $\mathrm{MeOH}(50$ cm^{3}) at $-30^{\circ} \mathrm{C}$ under N_{2} or Ar , and the mixture stirred for 510 min . The MeOH was removed under reduced pressure and NH_{3} (aqueous solution, $d 0.88 ; 40 \mathrm{~cm}^{3}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(40 \mathrm{~cm}^{3}\right)$ were added, and the mixture was stirred under air until the organic layer was a pale yellow-brown. The mixture was separated and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 40$ cm^{3}). The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the amino alcohols 4a as a $1: 1$ mixture of two diastereoisomers A and $B(476 \mathrm{mg}$, 98%) as a yellow oil (Found: $\mathrm{M}^{+}, 375.1991 . \mathrm{C}_{21} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{P}$ requires $M, 375.1964) ; R_{\mathrm{F}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\mathrm{NH}_{3}, 100: 10: 2\right)$ $0.41 ; v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3650\left(\mathrm{NH}_{2}\right), 3500-2970(\mathrm{OH}), 2970-$ $2690(\mathrm{CH}), 1580(\mathrm{Ph}), 1460-1420(\mathrm{P}-\mathrm{Ph}), 1170(\mathrm{P}=\mathrm{O}), 1110$ and $1090(\mathrm{CO}) ; \delta_{\mathbf{H}}\left(\mathrm{CDCl}_{3}\right) 0.82$ [3 HA or $\mathrm{B}, \mathrm{t}, J 6.8\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Me}$], 0.85 [3 HA or $\mathrm{B}, \mathrm{t}, J 6.9,\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Me}$], $0.99(3 \mathrm{HA}$ or $\mathrm{B}, \mathrm{t}, J 7.0$, $\left.\mathrm{OCH}_{2} \mathrm{Me}\right), 1.00\left(3 \mathrm{HA}\right.$ or $\left.\mathbf{B}, \mathrm{t}, J 7.0, \mathrm{OCH}_{2} \mathrm{Me}\right), 1.13-1.28$ (4 HA or $\mathbf{B}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.38 (1 HA or $\mathbf{B}, \mathrm{td}, J 10.7$ and 14.3 , 4$H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$), $1.54\left(1 \mathrm{HA}\right.$ or B, ddd, $J 2.8,8.3$ and $14.0,4-H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$), 1.62-1.72 (1 HA and $B, m, 4-\mathrm{H}_{A} \mathrm{H}_{\mathrm{B}}$), 2.75 (1 HA or $\mathrm{B}, \mathrm{m}, \mathrm{NCH}$), 3.12 (1 HA or $\mathrm{B}, \mathrm{m}, \mathrm{NCH}$), 3.17 (1 HA or $\mathrm{B}, \mathrm{qd}, J 7.1$ and 8.9 , $\mathrm{OCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$), $3.21\left(1 \mathrm{HA}\right.$ or $\mathrm{B}, \mathrm{qd}, J 7.1$ and $\left.9.0, \mathrm{OCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.64$ $\left(1 \mathrm{HA}\right.$ or $\mathrm{B}, \mathrm{qd}, J 7.0$ and $\left.8.9, \mathrm{OCH}_{\mathrm{A}} H_{\mathrm{B}}\right), 3.74(1 \mathrm{HA}$ or B, qd, J 7.0 and $9.0, \mathrm{OCH}_{\mathrm{A}} H_{\mathrm{B}}$), $4.01(1 \mathrm{HA}$ or $\mathrm{B}, \mathrm{t}, J 6.4, \mathrm{PCH}), 4.09$ (1

HA or B, dd, J 4.1 and $7.3, \mathrm{PCH}), 4.29(1 \mathrm{HA}$ and B, m, $\mathrm{HOCH}), 7.40-7.55$ (6 HA and $\mathrm{B}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$), $7.70-7.88$ (2 HA and $\mathrm{B}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$) and 7.95-8.05 (2 HA and $\mathrm{B}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 13.9(\mathrm{Me}), 14.0(\mathrm{Me}), 15.3(\mathrm{Me}), 15.4(\mathrm{Me}), 18.7$ $\left(\mathrm{CH}_{2}\right), 19.1\left(\mathrm{CH}_{2}\right) 37.8\left(\mathrm{CH}_{2}\right), 37.9\left(\mathrm{CH}_{2}\right), 39.3\left(\mathrm{CH}_{2}\right), 42.2$ $\left(\mathrm{CH}_{2}\right), 46.0(\mathrm{NC}), 51.7(\mathrm{NC}), 68.9(\mathrm{OCH}), 70.2\left(\mathrm{~d}, J 8, \mathrm{OCH}_{2}\right)$, $70.3\left(\mathrm{~d}, J 6, \mathrm{OCH}_{2}\right), 72.8(\mathrm{~d}, J 8, \mathrm{OCH}), 82.8(\mathrm{~d}, J 85, \mathrm{PCH}), 82.9$ (d, $J 87, \mathrm{PCH}), 128.1,128.2,128.4,128.4,128.5,128.5,129.9$ (d, J 96, ipso C), 130.6 (d, J 95, ipso C), 131.2, 131.3, 131.8, 131.9, $132.1,132.2,132.3,132.4$ and $133.0 ; m / z 375\left(\mathrm{M}^{+}, 0.8 \%\right), 332$ $\left(\mathrm{M}^{+}-\mathrm{Pr}, 1.2\right), 330\left(\mathrm{M}^{+}-\mathrm{EtO}, 0.5\right), 328\left(\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{O}\right.$, 1.6), $314\left(\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{O}, 3.2\right), 304 \quad\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{5} \mathrm{H}_{11} \mathrm{O}_{2}\right.$, 4.2], 289 [$\left.\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}, 3.2\right], 287\left(\mathrm{M}^{+}-\mathrm{Pr}-\mathrm{EtO}, 2.5\right)$, $260\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}, 89\right], 231\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{O}, 100\right], 215$ $\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2}, 9.5\right], 202\left(\mathrm{Ph}_{2} \mathrm{PHO}, 40\right), 201\left(\mathrm{Ph}_{2} \mathrm{PO}, 100\right), 185$ $\left(\mathrm{Ph}_{2} \mathrm{P}, 85\right), 174\left(\mathrm{M}^{+}-\mathrm{Ph}_{2} \mathrm{PO}, 14\right)$ and $77(\mathrm{Ph}, 23)$.
anti, anti- and anti, syn-4-Amino-1-diphenylphosphinoyl-1-ethoxy-4-phenylbutan-2-ol 4b.-By the above method, NaBH_{4} ($233 \mathrm{mg}, 6 \mathrm{mmol}$) was added portionwise to a stirred solution of anti-[5-diphenylphosphinoyl(ethoxy)methyl]-3-phenyl-4,5isoxazole $4 \mathrm{~d}(500 \mathrm{mg}, 1.23 \mathrm{mmol})$ and $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(587 \mathrm{mg}, 2.5$ mmol) in $\mathrm{MeOH}\left(100 \mathrm{~cm}^{3}\right)$ at $-30^{\circ} \mathrm{C}$ under N_{2} or Ar , and the mixture stirred for $5-10 \mathrm{~min}$. The MeOH was removed under reduced pressure and NH_{3} (aqueous solution, $d 0.88 ; 40 \mathrm{~cm}^{3}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(40 \mathrm{~cm}^{3}\right)$ were added, and the mixture was stirred under air until the organic layer was a pale yellow-brown. The mixture was separated and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 40 \mathrm{~cm}^{3}\right)$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give a 3.5:1 mixture of the amino alcohols $\mathbf{4 b} \mathbf{A}$ and \mathbf{B}, respectively, as a pale yellow foam ($489 \mathrm{mg}, 97 \%$) (Found: $\mathrm{M}^{+}, 409.1785$. $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{NO}_{3} \mathrm{P}$ requires $\left.M, 409.1806\right) ; R_{\mathrm{F}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\right.$ $\left.\mathrm{NH}_{3}, 100: 10: 2\right) 0.49 ; v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3520-3120(\mathrm{OH}$ and $\left.\mathrm{NH}_{2}\right), 2970-2800(\mathrm{CH}), 1585(\mathrm{Ph}), 1160(\mathrm{P}=\mathrm{O})$ and 1110 and $1090(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 0.96(3 \mathrm{HB}, \mathrm{t}, J 7.0, \mathrm{Me}), 0.97$ ($3 \mathrm{HA}, \mathrm{t}, J 7.0, \mathrm{Me}$), 1.82-2.00 (2 HA and B, m, 3-H H_{B}), 3.13 (1 HA, qd, $J 7.0$ and $\left.8.7, \mathrm{OCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.16\left(1 \mathrm{HB}, \mathrm{m}, \mathrm{OCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.57$ ($1 \mathrm{HA}, \mathrm{qd}, J 7.0$ and $8.7, \mathrm{OCH}_{\mathrm{A}} H_{\mathrm{B}}$), $3.65(1 \mathrm{HB}, \mathrm{qd}, J 7.0$ and $\left.8.7, \mathrm{OCH}_{\mathrm{A}} H_{\mathrm{B}}\right), 3.94(1 \mathrm{HA}, \mathrm{t}, J 6.5, \mathrm{PCH}), 3.98-4.03(2 \mathrm{HB}, \mathrm{m}$, PCH and NCH), $4.20(1 \mathrm{HA}, \mathrm{dq}, J 3.0$ and $7.0, \mathrm{OCH}), 4.27$ (1 $\mathrm{HB}, \mathrm{m}, \mathrm{OCH}), 4.36(1 \mathrm{HA}, \mathrm{dd}, J 3.6$ and $8.8, \mathrm{NCH}$), 7.17-7.31 (6 HA and $\mathrm{B}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ and PhCN), 7.40-7.60 (7 HA and B, m, $\mathrm{Ph}_{2} \mathrm{PO}$ and PhCN), 7.72-7.88 (1 HA and $\mathrm{B}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ and PhCN), and 7.93-8.05 (1 HA and $\mathrm{B}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ and PhCN); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ (only signals for \mathbf{A} are clearly visible) $15.3(\mathrm{Me}), 41.4$ (C-3), 52.1 (NC), $68.7(\mathrm{~d}, J c a .5, \mathrm{OCH}), 70.1\left(\mathrm{~d}, J 5, \mathrm{OCH}_{2}\right), 82.6$ (d, J 85, PCH), 125.8, 126.1, 127.0, 128.3, 128.5, 128.6, 131.2, $131.3,132.0,132.1,132.2,132.3,132.4$ and $145.4\left(\mathrm{NC}-\mathrm{C}_{\text {aryl }}\right)$; $m / z 409\left(\mathrm{M}^{+}, 12 \%\right), 304\left(\mathrm{M}^{+}-\mathrm{PhCH}_{2} \mathrm{~N}, 6.4\right), 260\left[\mathrm{Ph}_{2^{-}}\right.$ $\left.\mathrm{P}(\mathrm{O}) \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}, 81\right], 245\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}, 6.7\right], 231\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O})-\right.$ $\left.\mathrm{CH}_{2} \mathrm{O}, 100\right], 215\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2}, 8\right], 208\left(\mathrm{M}^{+}-\mathrm{Ph}_{2} \mathrm{PO}, 13\right)$, $202\left(\mathrm{Ph}_{2} \mathrm{PHO}, 31\right), 201\left(\mathrm{Ph}_{2} \mathrm{PO}, 51\right), 185\left(\mathrm{Ph}_{2} \mathrm{P}, 17\right), 120$ $\left(\mathrm{PhC}_{2} \mathrm{H}_{5} \mathrm{~N}, 23\right), 106\left(\mathrm{PhCH}_{3} \mathrm{~N}, 60\right)$ and $77(\mathrm{Ph}, 29)$.
anti, anti- and anti, syn-4-Acetamido-1-diphenylphosphin-oyl-1-ethoxyheptan-2-ol $5 \mathrm{a} .-\mathrm{Ac}_{2} \mathrm{O}\left(1 \mathrm{~cm}^{3}\right)$ was added to a stirred solution of anti, anti- and anti, syn-4-amino-1-diphenylphosphinoyl-1-ethoxyheptan-2-ol $4 \mathbf{4 a}$ ($79 \mathrm{mg}, 0.21$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \mathrm{~cm}^{3}\right)$ under Ar , and the mixture stirred for 2 h at room temperature. The solvent was removed under reduced pressure and the residue purified by column chromatography on SiO_{2}, eluting with EtOAc and then $10 \% \mathrm{MeOH}$ in EtOAc. The first fraction isolated contained one amido alcohol 5 a A $(49.5 \mathrm{mg}, 56.5 \%$); the second fraction isolated contained the other amido alcohol 5a B ($40 \mathrm{mg}, 45.5 \%$). The isomers were identified by ${ }^{1} \mathrm{H}$ NMR, but it is not known which isomer is which. The two were combined for characterisation
and further reaction. The combined isomers were a white foam (Found: $\mathrm{M}^{+}+\mathrm{H}, 418.2175 . \mathrm{C}_{23} \mathrm{H}_{32} \mathrm{NO}_{4} \mathrm{P}$ requires $M+\mathrm{H}$, 418.2147); $R_{\mathrm{F}}(10 \% \mathrm{MeOH}$ in EtOAc) 0.36 and 0.28 ; $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3500-3200(\mathrm{OH}$ and NH$), 3000-2800(\mathrm{CH})$, $1660(\mathrm{C}=\mathrm{O}), 1515\left(\mathrm{PPh}_{2}\right), 1160(\mathrm{P}=\mathrm{O}), 1120$ and $1095(\mathrm{CO})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ isomer A: $0.83(3 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{Me}), 1.00(3 \mathrm{H}, \mathrm{t}, J 7.0$, $\mathrm{Me}), 1.25-1.39\left(4 \mathrm{H}, \mathrm{m}, \mathrm{MeCH} \mathrm{CH}_{2}\right), 1.64-1.73\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right)$, $1.87(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}), 3.21\left(1 \mathrm{H}, \mathrm{qd}, J 7.0\right.$ and $\left.9.0, \mathrm{OCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right)$, $3.67\left(1 \mathrm{H}, \mathrm{qd}, J 7.0\right.$ and $\left.9.0, \mathrm{OCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 4.07-4.13(3 \mathrm{H}, \mathrm{m}, \mathrm{NCH}$ and PCHCHO), $6.10(1 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{NH}), 7.46-7.56(6 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{Ph}_{2} \mathrm{PO}\right)$, $7.76-7.84\left(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right)$ and $7.84-8.00(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{Ph}_{2} \mathrm{PO}\right)$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ isomer $\mathrm{B}: 0.84(3 \mathrm{H}, \mathrm{t}, J 7.2, \mathrm{MeO}), 0.98$ ($3 \mathrm{H}, \mathrm{t}, J 6.7, \mathrm{Me}$), $1.20-1.29\left(2 \mathrm{H}, \mathrm{m}, \mathrm{MeCH}_{2}\right), 1.35-1.41(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{MeCH}_{2} \mathrm{CH}_{2}\right), 1.55-1.64\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 1.88-2.00(1 \mathrm{H}$, $\mathrm{m}, 3-\mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}$), 1.91 ($3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}$), $3.10(1 \mathrm{H}$, quintet, $J 7.5$, $\left.\mathrm{OCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.52\left(1 \mathrm{H}\right.$, quintet, $\left.J 7.7, \mathrm{OCH}_{\mathrm{A}} H_{\mathrm{B}}\right), 3.85-3.95(1 \mathrm{H}$, $\mathrm{m})$ and 4.03-4.15 ($2 \mathrm{H}, \mathrm{m}$) (NCH and PCHCHO), $6.04(1 \mathrm{H}, \mathrm{br}$ $\mathrm{s}, \mathrm{NH}), 7.50-7.58$ ($6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$), $7.77-7.85\left(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right)$ and 7.95-8.03 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$); $m / z 418\left(\mathrm{MH}^{+}, 0.7 \%\right), 356\left(\mathrm{M}^{+}\right.$ $\left.-\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{O}, 1\right), 260\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}, 60\right], 231\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{O}\right.$, 100], $216\left(\mathrm{M}^{+}-\mathrm{Ph}_{2} \mathrm{PO}, 26\right), 202\left(\mathrm{Ph}_{2} \mathrm{PHO}, 20\right), 201\left(\mathrm{Ph}_{2} \mathrm{PO}\right.$, 31) and 77 ($\mathrm{Ph}, 20$).
anti, anti- and anti, syn-4-Acetamido-1-diphenylphosphin-oyl-1-ethoxy-4-phenylbutan-2-ol $5 \mathbf{b} .-\mathrm{Ac}_{2} \mathrm{O}\left(2 \mathrm{~cm}^{3}\right)$ was added to a stirred solution of anti, anti- and anti, syn-4-amino-1-diphenylphosphinoyl-1-ethoxy-4-phenylbutan-2-ol 4b (187 mg , $0.46 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(4 \mathrm{~cm}^{3}\right)$ under Ar , and the mixture stirred for 1.25 h at room temperature. The solvent was removed under reduced pressure and the residue purified by column chromatography on SiO_{2}, eluting with EtOAc then $10 \% \mathrm{MeOH}$ in EtOAc and finally $20 \% \mathrm{MeOH}$ in EtOAc to give the amido alcohols $\mathbf{5 b}$ as a pale yellow foam ($145 \mathrm{mg}, 70 \%$), from which crystallisation (MeOAc-hexane) gave a single (unidentified) isomer as white needles, m.p. 173.5-175 ${ }^{\circ} \mathrm{C}$ (Found: C, 69.2; H, 6.75; $\mathrm{N}, 3.15 ; \mathrm{M}^{+}$, 451.1922. $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{NO}_{4} \mathrm{P}$ requires $\mathrm{C}, 69.2 ; \mathrm{H}$, 6.7; N, 3.1; $M, 451.1912$); R_{F} ($10 \% \mathrm{MeOH}$ in EtOAc) 0.36 ; $v_{\text {max }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3500-3300(\mathrm{OH}), 2980-2800(\mathrm{CH}), 1665$ $(\mathrm{C}=\mathrm{O}), 1500(\mathrm{P}-\mathrm{Ph}), 1155(\mathrm{P}=0)$, and 1120 and $1100(\mathrm{CO})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.99\left(3 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{CH}_{2} \mathrm{Me}\right), 1.94(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe})$, $1.92-2.20\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right), 3.19\left(1 \mathrm{H}, \mathrm{qd}, J 7.0\right.$ and $\left.8.7, \mathrm{OCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right)$, $3.64\left(1 \mathrm{H}, \mathrm{qd}, J 7.0\right.$ and $\left.9.0, \mathrm{OCH}_{\mathrm{A}} H_{\mathrm{B}}\right), 4.04-4.10(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}$ and PCH), $5.21(1 \mathrm{H}, \mathrm{dt}, J 3.5$ and $8.5, \mathrm{NCH}), 6.76(1 \mathrm{H}, \mathrm{d}, J 8.3$, NH), 7.14-7.28 ($5 \mathrm{H}, \mathrm{m}, \mathrm{PhC}$), $7.40-7.57\left(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right)$ and 7.76-7.99 (4 H, m, Ph ${ }_{2} \mathrm{PO}$); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 15.5\left(\mathrm{CH}_{2} \mathrm{Me}\right), 22.6$ (COMe), $40.8\left(\mathrm{PhCCH}_{2}\right), 51.2(\mathrm{NCH}), 69.1$ (d, J 8, OCH), 71.3 (d, J 6, OCH_{2}), 84.1 (d, $J 85, \mathrm{PCH}$), 127.4, 128.1, 128.2, 128.3, 129.5, 129.5, 129.6, 129.8, 130.0, 131.3 (d, J98, ipso to P), 132.1 (half of C ipso to P), 132.2, 132.3, 132.8, 133.0, 133.1, 133.5, 133.5, 144.1 (ipso to C) and 172.8 ($\mathrm{C}=\mathrm{O}$); $m / z 451$ $\left(\mathrm{M}^{+}, 0.9 \%\right), 289\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}, 0.5\right], 260\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}\right.$, 15], 231 [$\left.\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{O}, 28\right], 202\left(\mathrm{Ph}_{2} \mathrm{PHO}, 10\right), 201\left(\mathrm{Ph}_{2} \mathrm{PO}\right.$, 10), $135\left(\mathrm{PhC}_{3} \mathrm{H}_{6} \mathrm{O}, 100\right)$ and $129\left(\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{NO}_{2}, 100\right)$.
(E)-N-(1-Ethoxyhept-1-en-4-yl)acetamide 6a.-NaH (50\% dispersion in oil; $20 \mathrm{mg}, 0.42 \mathrm{mmol}$) was added to a stirred solution of anti, anti- and anti, syn-4-acetamido-1-diphenyl-phosphinoyl-1-ethoxyheptan-2-ol 5 a ($80 \mathrm{mg}, 0.21 \mathrm{mmol}$) in DMF ($3 \mathrm{~cm}^{3}$) under Ar and the solution stirred for $17 \mathrm{~h} . \mathrm{Et}_{2} \mathrm{O}$ ($20 \mathrm{~cm}^{3}$) was added to the mixture which was then washed with $2.2 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous $\mathrm{NaOH}\left(3 \times 20 \mathrm{~cm}^{3}\right)$. The combined aqueous layers were washed with $\mathrm{Et}_{2} \mathrm{O}\left(25 \mathrm{~cm}^{3}\right)$ and the combined organic layers dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure. The residue ($34.5 \mathrm{mg}, 91 \%$) was purified by column chromatography on SiO_{2}, eluting with EtOAc-hexane (4:1) to give the enol ether 6 a as white plates, m.p. $34-36^{\circ} \mathrm{C}$ (Found: M^{+}, 199.1585. $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{NO}_{2}$ requires $M, 199.1572$); R_{F} (EtOAc-hexane; 4:1) 0.28; $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3470$ (NH),

3000-2800 (CH), 1660 ($\mathrm{C}=\mathrm{O}$), 1505 and 1375 (alkyl chain), 1200-1120 (CO), and $930\left(\mathrm{CH}=\mathrm{CH}\right.$ trans); $\delta_{\mathrm{H}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400\right.$ $\mathrm{MHz}) 0.89\left[3 \mathrm{H}, \mathrm{t}, J 6.8\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Me}\right], 1.23(3 \mathrm{H}, \mathrm{t}, J 7.0$, $\mathrm{OCH}_{2} \mathrm{Me}$), $1.26-1.38\left(4 \mathrm{H}, \mathrm{m}, \mathrm{MeCH} \mathrm{CH}_{2}\right), 1.90(3 \mathrm{H}, \mathrm{s}$, COMe), 1.99-2.08 ($2 \mathrm{H}, \mathrm{m}, \mathrm{C}=\mathrm{CCH}_{2}$), $3.69(2 \mathrm{H}, \mathrm{q}, J 7.0$, $\left.\mathrm{OCH}_{2}\right), 3.83(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}), 4.67(1 \mathrm{H}, \mathrm{td}, J 7.7$ and 12.6 , $\mathrm{OC}=\mathrm{CH}$), $5.33\left(1 \mathrm{H}, \mathrm{m}\right.$ obscured by $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{NH}$), and 6.23 (1 $\mathrm{H}, \mathrm{d}, J 12.6, \mathrm{OCH}=\mathrm{C}) ; \delta_{\mathrm{C}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 14.0(\mathrm{Me}), 14.8(\mathrm{Me}), 19.4$ $\left(\mathrm{CH}_{2}\right), 23.4(\mathrm{COMe}), 33.2\left(\mathrm{CH}_{2}\right), 36.4\left(\mathrm{CH}_{2}\right), 49.3(\mathrm{NCH}), 64.9$ $\left(\mathrm{OCH}_{2}\right), 99.2(\mathrm{OC}=C), 148.2(\mathrm{OC=C})$ and $160.3(\mathrm{C}=\mathrm{O}) ; m / z 199$ $\left(\mathrm{M}^{+}, 0.05 \%\right), 140\left(\mathrm{M}^{+}-\mathrm{MeCONH}_{2}, 30\right), 114\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{NO}\right.$, 16), $111\left(\mathrm{M}^{+}-\mathrm{MeCONH}_{2}-\mathrm{Et}, 17\right), 86\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}, 12\right), 84$ $\left(\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}, 18\right)$ and $72\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}, 100\right)$.
(E)-N-(4-Ethoxy-1-phenylbut-3-enyl)acetamide $\mathbf{6 b} .-\mathrm{NaH}$ (50% dispersion in oil; $20 \mathrm{mg}, 0.5 \mathrm{mmol}$) was added to a stirred solution of anti, anti- and anti, syn-4-acetamido-1-diphenyl-phosphinoyl-1-ethoxy-4-phenylbutan-2-ol 5b ($118 \mathrm{mg}, 0.26$ mmol) in DMF ($4 \mathrm{~cm}^{3}$) under Ar, and the mixture stirred for $16 \mathrm{~h} . \mathrm{Et}_{2} \mathrm{O}\left(25 \mathrm{~cm}^{3}\right)$ was added to the mixture which was then washed with $2.2 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous $\mathrm{NaOH}\left(3 \times 25 \mathrm{~cm}^{3}\right)$. The combined aqueous layers were extracted with $\mathrm{Et}_{2} \mathrm{O}\left(25 \mathrm{~cm}^{3}\right)$, and this organic extract washed with $\mathrm{NaOH}\left(2.2 \mathrm{~mol} \mathrm{dm}^{-3} ; 25\right.$ $\left.\mathrm{cm}^{3}\right)$. The combined $\mathrm{Et}_{2} \mathrm{O}$ layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give a yellow, hygroscopic solid, which was purified by column chromatography on SiO_{2}, eluting with 20% hexane in EtOAc to give the enol ether $\mathbf{6 b}(24 \mathrm{mg}, 39 \%)$ as white prisms, m.p. $79-82{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{M}^{+}{ }^{-}$ $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NO}$, 174.1050. $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{2}$ requires $M-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NO}$, 174.1045); $R_{\mathrm{F}}\left(20 \%\right.$ hexane in EtOAc) $0.30 ; v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1}$ 3440 (NH), 3050-2800(CH), 1660 (C=O), $1500(\mathrm{Ph}), 1195,1160$ and $1130(\mathrm{CO})$ and $935(\mathrm{CH}=\mathrm{CH}$ trans $) ; \delta_{\mathrm{H}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 1.21(3 \mathrm{H}$, $\mathrm{t}, J 7.0, \mathrm{CH}_{2} \mathrm{Me}$), $1.95(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}), 2.37(2 \mathrm{H}, \mathrm{dt}, J 1.0$ and $\left.7.0, \mathrm{NCCH}_{2}\right), 3.65\left(2 \mathrm{H}, \mathrm{q}, J 7.0, \mathrm{OCH}_{2}\right), 4.56(1 \mathrm{H}, \mathrm{td}, J 7.6$ and $12.6, \mathrm{OCH}=\mathrm{C} H), 4.88(1 \mathrm{H}, \mathrm{br} \mathrm{q}, J 7, \mathrm{NCH}), 6.01(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J$ $5.5, \mathrm{NH}), 6.36(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 12.7, \mathrm{OCH})$ and $7.21-7.37(5 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}) ; \delta_{\mathrm{C}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 14.7\left(\mathrm{CH}_{2} \mathrm{Me}\right), 23.3(\mathrm{COMe}), 35.1\left(\mathrm{NCCH}_{2}\right)$, $53.8(\mathrm{NCH}), 64.9\left(\mathrm{OCH}_{2}\right), 98.7(\mathrm{OC}=\mathrm{C}), 126.6,127.2$ and 128.6 (o, m and $p \mathrm{Cs}$), 142.6 (ipso C), $148.6(\mathrm{OC=C}$) and $169.3(\mathrm{C}=\mathrm{O})$; $m / z 174\left(\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NO}, 18 \%\right), 148\left(\mathrm{PhC}_{3} \mathrm{H}_{5} \mathrm{NO}, 32\right), 106$ $\left(\mathrm{PhCH}_{3} \mathrm{~N}, 100\right)$ and $57\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{NO}, 16\right)$.

References

1 M. Maleki, A. Miller and O. W. Lever, Tetrahedron Lett., 1981, 22, 365.
2 S. K. Armstrong, E. W. Collington, J. G. Knight, A. Naylor and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1993, 1433.

3 D. R. Borthakur and J. S. Sandhu, J. Chem. Soc., Chem. Commun., 1988, 1444.
4 (a) K. N. Houk, S. R. Moses, Y.-D. Wu, N. G. Rondan, V. Jäger, R. Schohe and F. R. Fronczek, J. Am. Chem. Soc., 1984, 106, 3880; (b) K. N. Houk, H.-Y. Duh, Y.-D. Wu and S. R. Moses, J. Am. Chem. Soc., 1986, 108, 2754.
5 D. P. Curran, J. Am. Chem. Soc., 1983, 105, 5826; D. P. Curran and S. A. Gothe, Tetrahedron, 1988, 44, 3945.

6 S. K. Armstrong, S. Warren, E. W. Collington and A. Naylor, Tetrahedron Lett., 1991, 32, 4171.
7 R. Annunziata, M. Cinquini, F. Cozzi, A. Gilardi and A. Restelli, J. Chem. Soc., Perkin Trans. 1, 1985, 2289.

8 A. D. Buss and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1985, 2307; D. Cavalla, W. B. Cruse and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1987, 1883; A. D. Buss, N. Greeves, R. Mason and S. Warren, J. Chem. Soc., Perkin Trans 1, 1987, 2569.

9 P. Laszlo and P. von Schleyer, Bull. Soc. Chim. Fr., 1964, 87.

Paper 3/05880H
Received 30th September 1993 Accepted 23rd November 1993

